Linking Risk and Sustainability

to meet current and future challenges in circular economy, food safetyand consumer protection

Peter Fantke

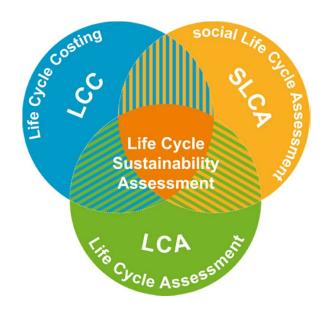
(Technical University of Denmark, DTU)

BfR Symposium | Berlin | 1-Dec-2017

Risk and Sustainability Perspectives

Risk assessment

- Inherent hazards
- High precision
- Ensuring safety


Sustainability assessment

- Life-cycle perspective
- All local-to-global impacts
- ... also social & economic impacts (17 UN goals)
- Ensuring sustainability

Different questions

- Is it safe?
- Is it sustainable?

Sustainability and the Life Cycle

Inventory of environmental exchanges

7.5E-04

1.5E-03

1.8E-04

6.4F-05

4.0E-05

2.2E-03

1.4E-04

1.4E-01

8.9E-05

7440-62-2

1330-20-7

7440-66-6

CAS.no. to air to water Substance 2-hydroxy-ethanacrylate 816-61-0 0.0348 1761-71-2 5.9E-02 4,4-methylenebis cyclohexylamine 7664-81-7 3.7E-05 4.2E-05 Ammonia 7440-38-2 Arsenic (As) 2.0E-06 Benzene 71-43-2 (cur 5.0E-02 Lead (Pb) 7439-92-1 8.5F-06 Butoxyethanol 111-76-2 6.6E-01 Carbondioxide 124-38-9 2.6E+02 Carbonmonoxide (CO) 630-08-0 1.9E-01 Cadmium (Cd) 2.2E-07 7440-46-9 Chlorine (Cl2) 7782-50-5 4.6F-04 Chromium (Cr VI) 7440-47-3 5.3E-06 Dicyclohexane methane 86-73-6 5.1E-02 Nitrous oxide(N2O) 10024-97-2 1.7E-02 2.4-Dinitrotoluene 9.5E-02 5124-30-1 7.5E-02 Hydro carbons (electricity, stationary combusti Hydrogen ions (H+) i-butanol 78-83-1 3.5E-02 i-propanol 67-63-0 9.2E-01 copper (Cu) 7740-50-8 1.8E-05 Mercury(Hg) 7439-97-6 2.7E-06 74-82-8 Methane 5.0E-03 Methyl i-butyl ketone 108-10-1 5.7E-02 Monoethyl amine 75-04-7 7.9E-06 Nickel (Ni) 7440-02-0 1.1E-05 1.1E+00 Nitrogen oxide (NOx) 10102-44-0 NMVOC, diesel engine (exhaust) 3.9E-02 NMVOC, power plants (stationary combustion) 3.9E-03 Ozone (O3) 10028-15-6 1.8F-03 ikke specifik Phenol 108-95-2 1.3E-05 Phosgene 75-44-5 1.4E-01 Polyeter polyol ikke specifik 1.6E-01 1.2-propylenoxide 75-56-9 8 2F-02 Nitric acid 7782-77-6 (c 8.5E-02 Hydrochloric acid 7647-01-0 (c 1.9E-02 Selenium (Se 7782-49-2 2.6E-05 Sulphur dioxide(SO2) 7446-09-5 1.3E+00 Toluene 108-88-3 4.8E-02 Toluene-2,4-diamine 95-80-7 7.9E-02 Toluene diisocyanat (TDI) 26471-62-5 1 6F-01 2.6E-05 Triethylamine 121-44-8 1.6E-01

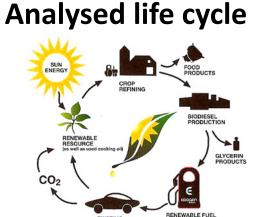
Unspecified aldehydes

Vanadium

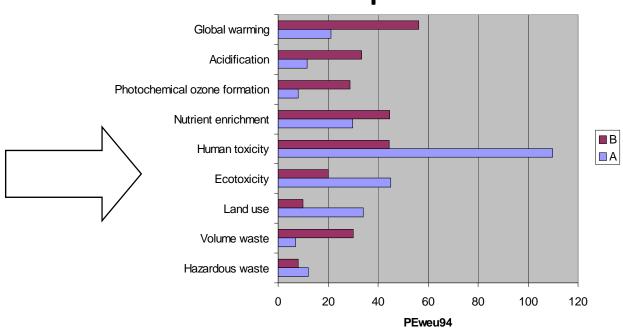
Xvlene

Zinc (Zn

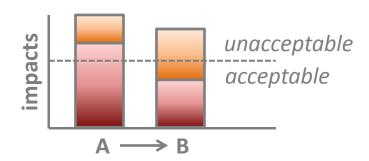
Uspecified organic compounds


VOC. diesel engine (exhaust)

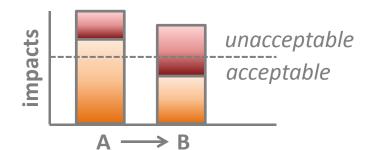
VOC. stationary combustion (coal fired)


VOC, stationary combustion (oil fired)

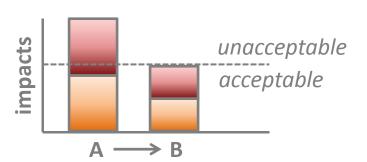
VOC, stationary combustion (natural gas fired)


Environmental profile of solutions

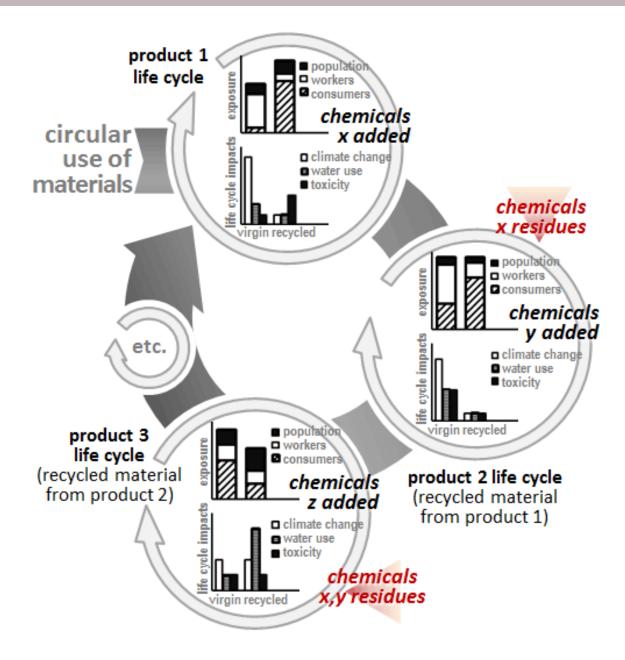
Toward Optimal Solutions


Safe but unsustainable → unacceptable

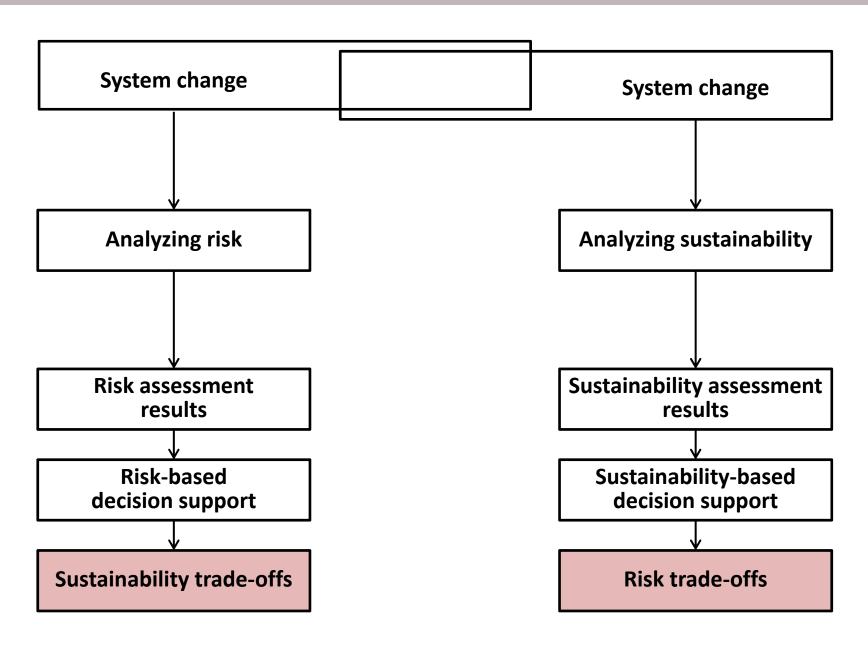
- Ensuring hygiene using disposable equipment
- Using zinc oxide as growth promoter in pigs


Sustainable but not safe → unacceptable

- Gene crops with higher yields but risk for genome
- Recycling of plastics in food packaging materials



Safe and sustainable → robust solution


- Set safety requirements that respect sustainability implications and design solutions that ensure desired safety levels in a sustainable manner
- Identify, assess and manage risks accompanying "sustainable solutions"


Example: Chemicals in Circular Economy

Risk vs. Sustainability -> NO!

Combined Risk and Sustainability -> YES!

Thank you!

... but wait ...

Peter Fantke

(Technical University of Denmark, DTU)

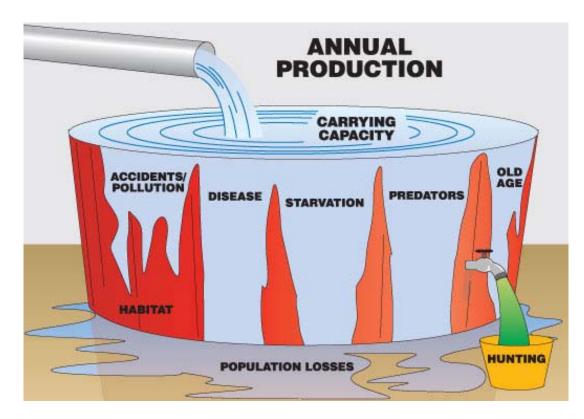
BfR Symposium | Berlin | 1-Dec-2017

We Still Have a Challenge

$$I = P \cdot A \cdot T = Pop \cdot \frac{GDP}{person} \cdot \frac{I}{GDP}$$

- *I* : environmental impact
- *Pop* : global population
- A: affluence (material standards of living)
- T: technology factor (impact per created value)

We Still Have a Challenge


$$I = P \cdot A \cdot T = Pop \cdot \frac{GDP}{person} \cdot \frac{I}{GDP}$$

- Population may level off ~10 billion
- Material standards of living will grow strongly in newly industrialised regions(Asia, South America)
- Environmental impact already exceeds sustainable levels in many areas
- So what is the challenge?

We Still Have a Challenge

$$I = P \cdot A \cdot T = Pop \cdot \frac{GDP}{person} \cdot \frac{I}{GDP}$$

- → Decrease impact per created value to be sustainable
- → What is ENOUGH?

Thank you!

... but wait ...

Peter Fantke

(Technical University of Denmark, DTU)

BfR Symposium | Berlin | 1-Dec-2017

