Toxikologie von Cadmium

Prof. Dr. Andrea Hartwig

Technische Universität Berlin

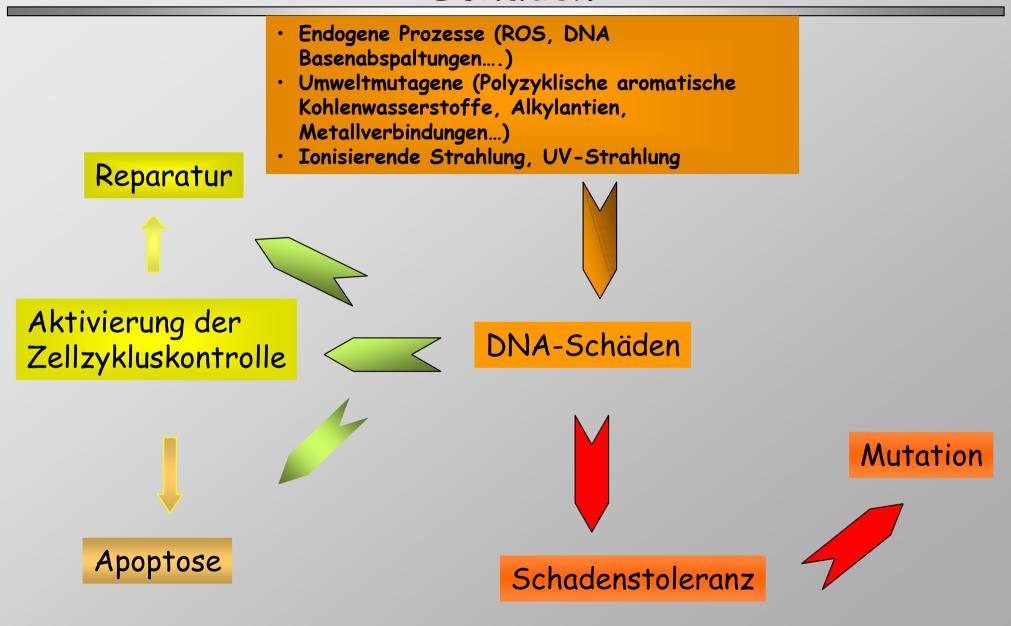
Institut für Lebensmitteltechnologie und Lebensmittelchemie

Fachgebiet Lebensmittelchemie und Toxikologie

Toxikologie von Cadmium - Kanzerogenität

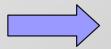
Inhalation:

- Beim Menschen (IARC 2009): Lunge: "sufficient evidence"; Niere, Prostata: "limited evidence")
- Im Tierversuch: Lunge


Orale Aufnahme bzw. Umweltexposition:

- Beim Menschen: Hinweise auf Lungen-, Prostata-, Blasen-,
 Gebährmutter- und Brusttumoren
- · Im Tierversuch: Tumoren der Prostata, Hoden, Nebenniere

Wirkungsmechanismen Kanzerogenität


- · Keine direkte Wechselwirkung mit der DNA
- Induktion von oxidativem Stress, wahrscheinlich durch Hemmung von oxidativen Schutzsystemen (z.B. antioxidativen Enzymen)
- · Hemmung von DNA-Reparaturprozessen
- Inaktivierung von Tumorsuppressorproteinen, z.B. p53
- Aktivierung von Protoonkogenen und Deregulierung des Zellwachstums
- Veränderung von DNA-Methylierungsmustern

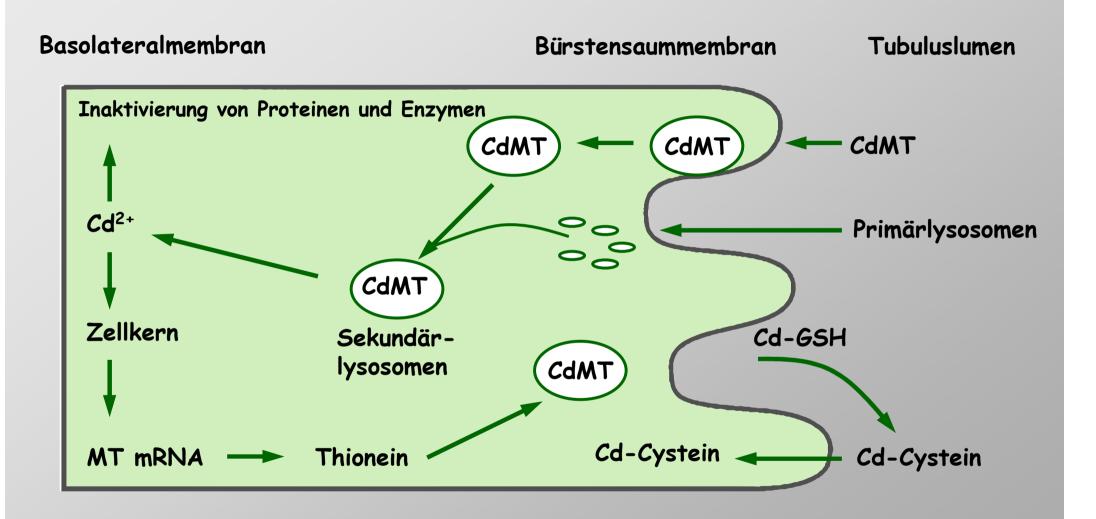
Netzwerk zellulärer Antworten auf DNA-Schäden

Relevante sonstige nicht kanzerogene Wirkungen

- Respirationstoxische Wirkungen (bei beruflicher Exposition und bei Rauchern)
- Knochensubstanzschädigende Wirkungen (entweder direkt oder indirekt als Folge von Nierenfunktionsstörungen)
- · Nierentoxizität (tubuläre Schädigung in der Nierenrinde)

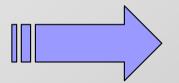
Empfindlichster Parameter der Cadmiumtoxizität

Cadmiumkonzentrationen in Körperflüssigkeiten und Geweben der Allgemeinbevölkerung in Deutschland

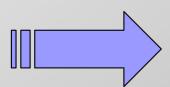

Probenmaterial	Median	Bereich	Konzentration
Blut (μg/l)	0,2 (Nichtraucher)	0,1 - 0,5	0,9 - 4,5 nM
	1,3 (Raucher)	0,3 - 3,0	2,7 - 27 nM
Urin (µg / I)	0,24 (Nichtraucher)	0,08 - 0,65	0,7 - 5,85 nM
	0,44 (Raucher)	0,13 - 1,29	1,2 - 11,6 nM
Leber (μg/g Feuchtgewicht)		0,5 - 5	4,4 - 44 μM
Nierenrinde (µg/g Feuchtgewicht)	ca. 20	3 - 230	26,7 μM - 2,0 mM

Bindung von Cadmium an Metallothionein

Metallothionein:


- · kleines, cysteinreiches Protein
- · bindet Zink und andere Schwermetalle
- · induzierbar
- schützt vor akuter
 Toxizität
- · bewirkt aber lange Halbwertszeit

Mechanismus der nephrotoxischen Wirkung von Cadmium



Ableitung des TWI anhand der Nierentoxizität durch die EFSA

- ·Ausscheidung von ß-2-Mikroglobulin im Urin als Biomarker für Nierentoxizität
- ·Benchmark-Ableitung (5% Konfidenzlimit): 3,9 μg Cd/g Kreatinin
- ·Sicherheitsfaktor 3.9 (interindividuelle Variation der Cd-Ausscheidung)

1 μg Cd/g Kreatinin

Zur Einhaltung dieses Wertes bei 95 % der 50-jährigen Bevölkerung: TWI-Wert von 2,5 µg Cd/kg KG