16. BfR-Forum Verbraucherschutz: Pyrrolizidinalkaloide. 3.-4. Dezember 2015, Berlin



# Pyrrolizidinalkaloide in Futtermitteln

Christoph Gottschalk (LMU, Oberschleißheim)\*
Johannes Ostertag (LfL Bayern, Poing/Grub)
Karsten Meyer (TUM, Weihenstephan)
Manfred Gareis (LMU, Oberschleißheim)



<sup>\*</sup>christoph.gottschalk@lmu.de

## Agenda

- Relevante Pflanzen, Futtermittel und PA-Vorkommen
- PA-Problematik im bayerischen Allgäu
- Proben und Ergebnisse
- Schlussfolgerungen



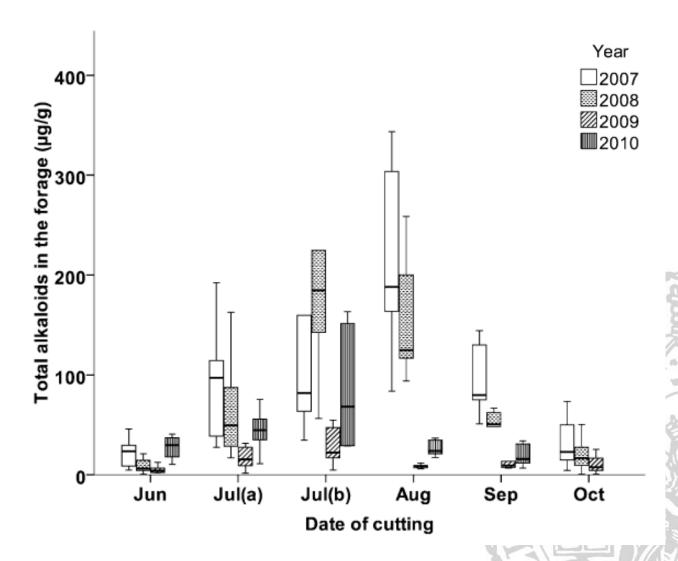
Foto: G. Rößl (LfL Bayern)

#### Relevante Pflanzen und PA in Futtermitteln

| Gruppierung nach EFSA (2011)                  | PA (+ korrespondierende N-Oxide)                                                 |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| Senecio spp. (Asteraceae)                     | Erucifolin, Integerrimin, Jacobin, Jaconin, Retrorsin, Senecionin, Seneciphyllin |
| Boraginaceae und Eupatorium spp. (Asteraceae) | Acetylechimidin, Echimidin, Lycopsamin und jeweilige Isomere                     |
| Heliotropium spp. (Boraginaceae)              | Europin, Heliotrin, Lasiocarpin                                                  |
| Crotalaria spp. (Fabaceae)                    | Fulvin, Monocrotalin, Retusamin,<br>Trichodesmin                                 |

## Rechtlicher Aspekt (Regelung für Teile von PA-Pflanzen!)

| Gruppierung nach EFSA (2011)                  | Richtlinie 2002/32/EG, Abschnitt VI: Schädliche botanische Verunreinigungen |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Senecio spp. (Asteraceae)                     |                                                                             |  |  |
| Boraginaceae und Eupatorium spp. (Asteraceae) | Unkrautsamen, die Alkaloide – enthalten 3000 mg/kg *                        |  |  |
| Heliotropium spp. (Boraginaceae)              |                                                                             |  |  |
| Crotalaria spp. (Fabaceae)                    | 100 mg/kg *                                                                 |  |  |


<sup>\*</sup> geltend für Futtermittel-Ausgangserzeugnisse und Mischfuttermittel, 12 % Feuchtigkeitsgehalt

#### Daten zum PA-Vorkommen in Futtermitteln

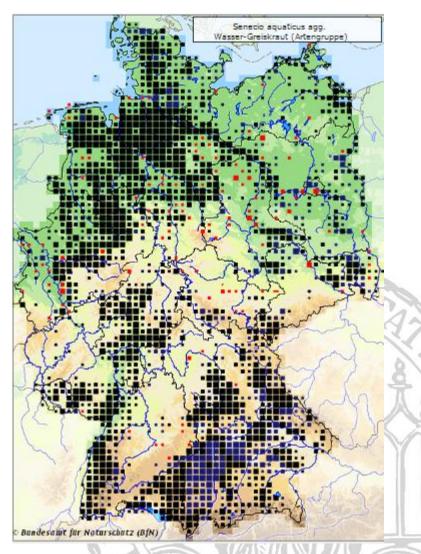
- Vergiftungen bei Weidetieren seit Jahrzehnten bekannt, vor allem Berichte aus Australien (Heliotropium), Afrika/Südamerika (Senecio)
- Vergiftungsfälle = einzelne Fallstudien (Stegelmeier 2004, Wiedenfeld 2011)

|                              | Probenzahl (% pos.) | PA-Gehalte (μg/kg)                                        |      | Quelle                                |
|------------------------------|---------------------|-----------------------------------------------------------|------|---------------------------------------|
| Futtermittel                 |                     | Mean                                                      | Max  |                                       |
| Grassilagen                  | 56 (5 %)            | <lod< td=""><td>28</td><td>Mulder et al. 2009</td></lod<> | 28   | Mulder et al. 2009                    |
| Heu                          | 37 (3 %)            | 15                                                        | 549  |                                       |
| Gras/-pellets                | 23 (17 %)           | 14                                                        | 288  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| Luzerne                      | 31 (74 %)           | 455                                                       | 5401 |                                       |
| Grassilagen                  | 115 (18 %)          | 4,8                                                       | 30   | Gottschalk et al. 2015                |
| Pferdefutter (luzernehaltig) | 6 (100 %)           | 104                                                       | 411  | Huybrechts et al. 2015                |

## Inter-/Intra-Jahres Schwankungen der PA-Gehalte



PA-Gehalte im Erntegut der Jahre 2007-2010 (Chizzola et al. 2015)


#### Forschungsprojekt Senecio aquaticus im Allgäu

Wasserkreuzkraut-Projekt der Bayerischen Landesanstalt für Landwirtschaft (LfL) / Landesamt für Umwelt (LfU):

Alarmierende Verbreitung von Senecio aquaticus im (Ost-)Allgäu

#### Probenmaterial:

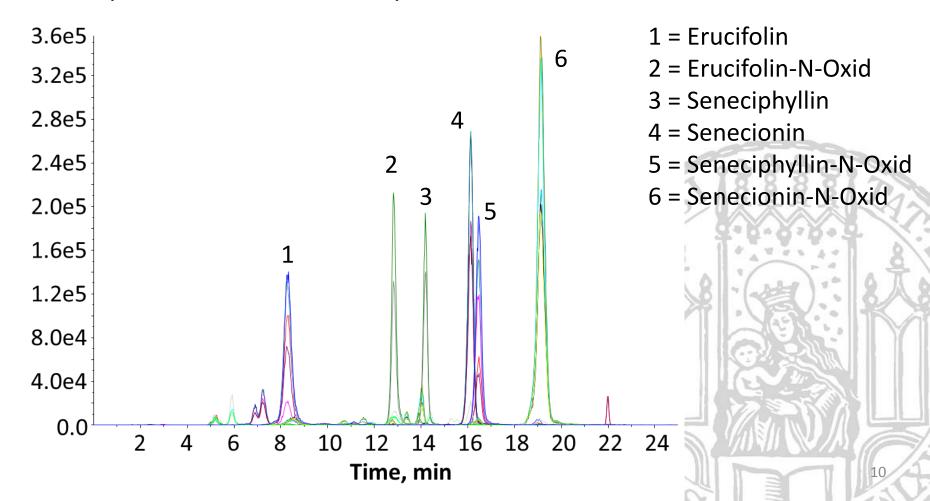
- Grünlandaufwuchs von Flächen mit
  - niedrigem Besatz (ca. 10 %)
  - mittlerem Besatz (ca. 30 %)
  - hohem Besatz (Versuchsfeld Öschlesee, Besatz ca. 50 %)
- daraus erzeugte Grascobs und Heu
- Grassilagen



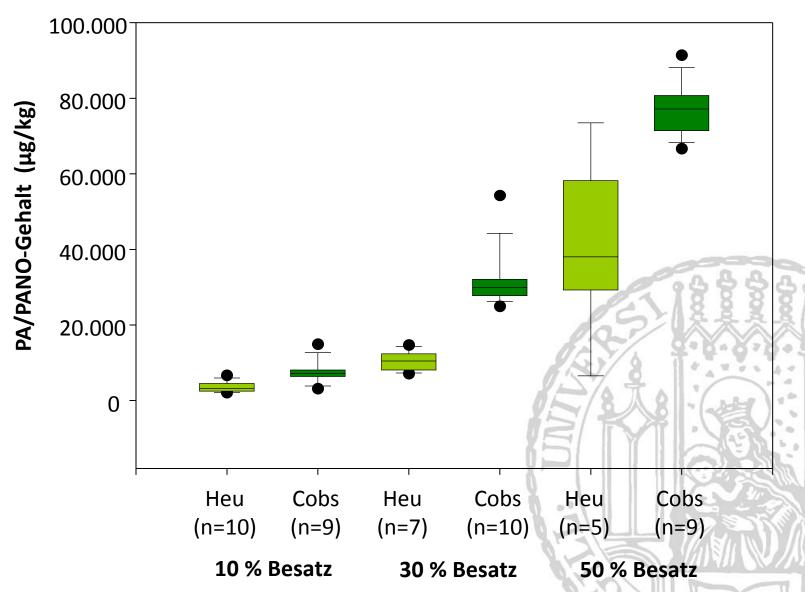
Quelle: floraweb.de

# Forschungsprojekt *Senecio aquaticus*




#### Forschungsprojekt Senecio aquaticus

#### Fragestellungen:

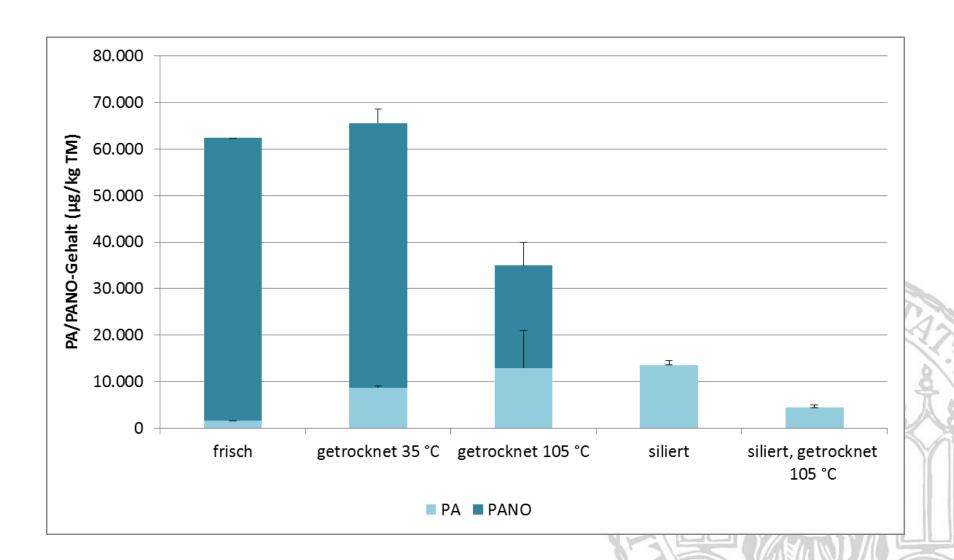

- Welche PA-Gehalte treten in Heu aus den unterschiedlich belasteten Flächen auf?
- In wie fern erfolgt eine Reduktion des PA-Gehaltes durch die Herstellung von Grascobs, Heubereitung (Trocknung), Silierung?
- Welche Bedeutung haben die ermittelten PA-Gehalte für die Sicherheit der Futtermittel?

#### Messung mittels LC-MS/MS Multimethode

- 28 PA und PANO, Extraktion 2 % Ameisensäure, Matrixkalibration (basierend auf Gottschalk et al. 2015, J Anim Feed Sci Technol)
- Hauptvertreter in Senecio aquaticus:



#### Ergebnisse Heu- und Cobsproben




### Einfluss der Heutrocknung und Silierung



frisch Heu, 35 Grad C Heu, 105 Grad C Silage, 60 d

### Einfluss der Konservierung auf PA und PANO-Gehalte



#### Beurteilung PA-Aufnahme durch das Rind

Feldproben von Heu- und Cobs aus dem Allgäu (mittlere PA-Gehalte)

Szenario 1 (Heu, niedriger Besatz): 3,7 mg/kg Szenario 2 (Heu, mittlerer Besatz): 10,4 mg/kg Szenario 3 (Cobs, hochbelastet): 77,4 mg/kg

|            | PA-Aufnahme*<br>(mg/Tier/Tag) | PA-Aufnahme**<br>(mg/kg LM/Tag) | Anteil an letaler Dosis *** |
|------------|-------------------------------|---------------------------------|-----------------------------|
| Szenario 1 | 56                            | 0,08                            | 3,2 %                       |
| Szenario 2 | 156                           | 0,22                            | 8,8 %                       |
| Szenario 3 | 1161                          | 1,66                            | 66,4 %                      |

<sup>\*</sup> Annahme: Futteraufnahme/d: 15 kg TM



<sup>\*\*</sup> Lebendmasse (LM) 700 kg

<sup>\*\*\*</sup> Stegelmeier 2004: 2,5 mg/kg LM pro Tag während 18 Tagen

#### Schlussfolgerungen

- Die Verbreitung von PA-Pflanzen in bestimmten Regionen stellt ein ernst zu nehmendes Problem für die Futtermittelsicherheit dar
- Inter/Intra-Jahres Schwankungen sowie mangelhafte Datenlage (Vorkommen/Toxikologie) erschweren die Bewertung
- Der Prozess der Cobsherstellung führt zu keiner Reduktion der PA-Gehalte
- Heutrockung und Silierung reduziert messbare PANO-Gehalte = Detoxifizierung?
  - dringender Forschungsbedarf
    - Daten (Vorkommen, Metabolismus) -> umfassende Risikobewertung
    - Maßnahmen bei der Futtermittelerzeugung?
    - Tiergesundheit: welche PA-Belastung des Nutztieres/welcher PA-Besatz ist vertretbar?
    - Sachgerechte Information des Landwirts vor Ort

#### Danksagung an



Klaus Gehring, Rasso Höck, Ulrich Sorg (Senecio-AG Öschleseeprojekt), Bayerische Landesanstalt für Landwirtschaft / Bayerisches Landesamt für Umwelt



Karsten Meyer, Johann Bauer, Julia Matthes, Rene Mamet Lehrstuhl für Tierhygiene, TU München Weihenstephan



Monika Lahrssen-Wiederholt, Angelika Preiß-Weigert, Anja These, Dorina Bodi, Ines Schirrmann, Abteilung 8, Bundesinstitut für Risikobewertung



Monika Ruhland, Holger Knapp

Bayerische Landesamt für Gesundheit und Lebensmittelsicherheit



Barbara Biermaier, Veronika Schnittke Technische Assistenz: Helmut Ziemann, Michaela Freitag, Carmen Piller





