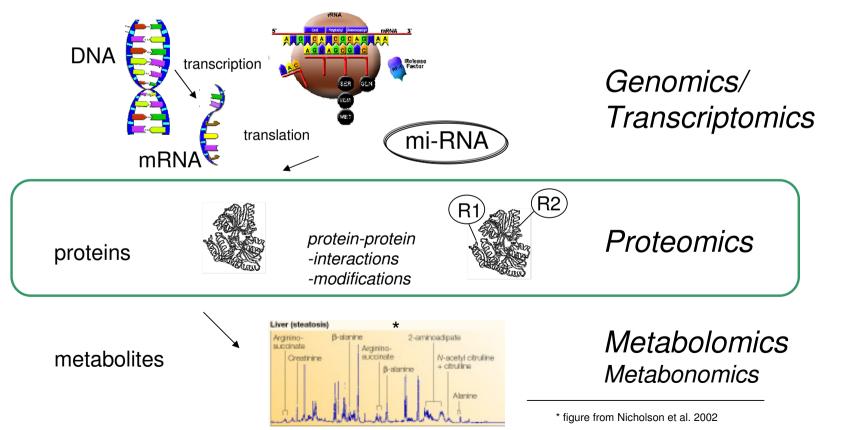


Innovative Technologien für die Wirkungsbezogene Analytik I:

Proteomics

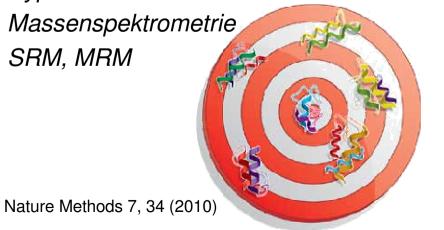
Axel Oberemm


Abteilung Lebensmittelsicherheit

Proteomics (Proteomik)

- Charakterisierung der Form, Funktion und Interaktion der Proteine eines Organismus
- globale Analyse der Expression von Proteinen in Organismen (Zellen, Geweben)
- zentrale Bedeutung der Proteine für die Steuerung von zellulären Prozessen:
- → exogene Einflüsse bewirken komplexe, spezifische Änderungen der Proteinexpression

OMICS Methoden



Proteomics- Strategien

- klassischer Ansatz: globaler Vergleich von Zuständen (Situation A vs. B vs. C ...)
 - → nicht Hypothesen-basiert, keine Vorinformation nötig ("Discovery Proteomics")
 - → 2-DE basierte Proteomics ("Top-Down"), "Shotgun" Proteomics ("Bottom-up")
 - → Analysen können Ergebnisse und Erkenntnisse liefern, die mit anderen Methoden gezielt weiter untersucht werden können
- "Targeted" Proteomics: sensitive Erfassung, Charakterisierung und Quantifizierung einzelner ausgewählter Proteine
 - → Hypothesen-basiert

→ Massenspektrometrie

→ SRM, MRM

Vergleich unbehandelt vs. behandelt **Erfassung von Expressionsprofilen**

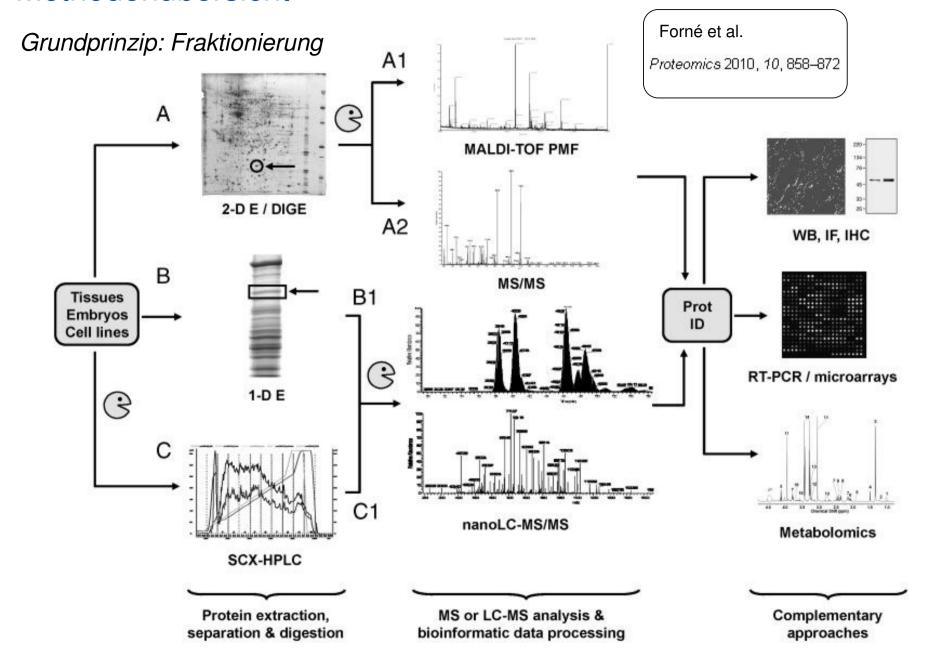
Kurzzeit-Exposition

in vitro - in vivo

Globale Analyse der Proteinexpression

- Erfassung und Quantifizierung möglichst vieler Proteine in einer biologischen Probe
- Hauptziele: Kategorisierung und Zuordnung von Expressionsprofilen
 - + Aufklärung von Wirkungsmechanismen, Etablierung von Biomarkern

Herausforderungen


- Unterschiedliche chemisch-physikalische Eigenschaften der Proteine:
 - Molekulargewicht, wasserlöslich fettlöslich, Polarität
 - → Extraktion/ Solubilisierung Trennung + Quantifizierung
- Komplexizität:
 - Diversität > 20 Tsd. Gene → Splicing, Modifikationen, Degradierung
 - > 30 Tsd. Proteinspezies/ Zelle
 - + Abundanzen (dynamischer Bereich < 10² >>> 10⁶)
 - → abundante Proteine maskieren gering exprimierte Proteine
 - → zeitliche Dynamik

Durchführung

- Grundprinzip: Solubilisierung der Proteine + Fraktionierung der komplexen Proteinextrakte
- tryptischer Verdau zu einem Peptidgemisch
- Proteinidentifizierung mittels Massenspektrometrie und Datenbanksuche

Methodenübersicht

2-DE (2D Elektrophorese)- basierte Proteomics ("top-down")

Trennung komplexer Proteinlysate über

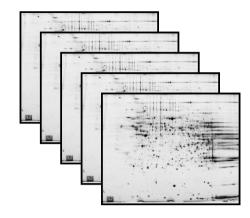
- → isoelektrischen Punkt (pH-Gradient, isoelektrische Fokussierung/ IEF) und
- → Molekülgröße (SDS-PAGE) O'Farrell und Klose, **NEPHGE** (1975)

■ (1) NEPHGE-Technik (*Nonequilibrium pH Gel Electrophoresis*)

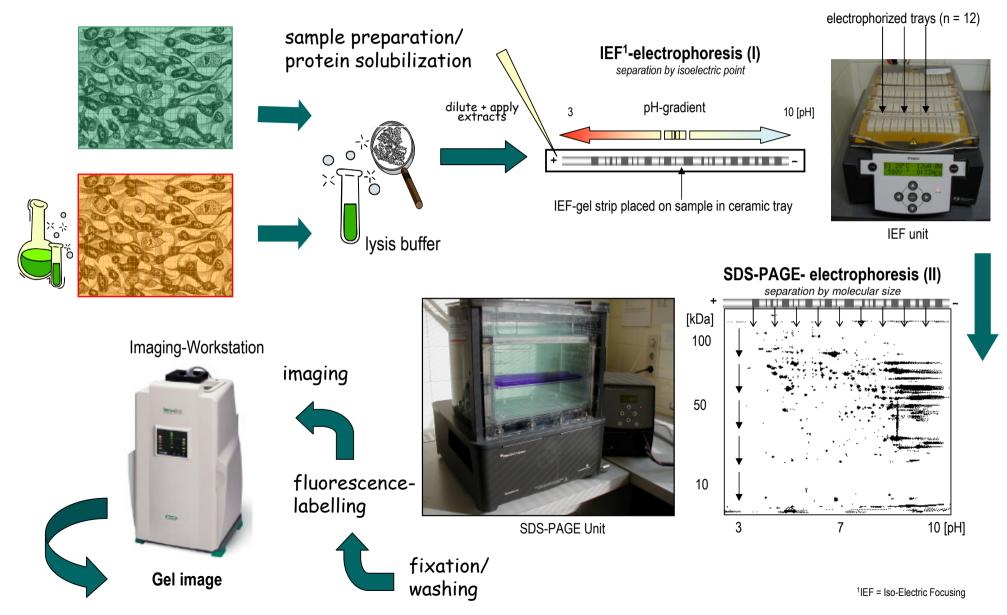
- → IEF mittels pH-Gradienten im Röhrchengel (Träger-Ampholyte, Acrylamid)
- → IEF nicht bis zum Steady State (Kathodendrift)
- → hochauflösend, gute Trennung im hochmolekularen und basischen Bereich
- → manuell sehr anspruchsvoll, hohe Anforderungen für reproduzierbare Ergebnisse
- → max 8 Gele/ Kammer

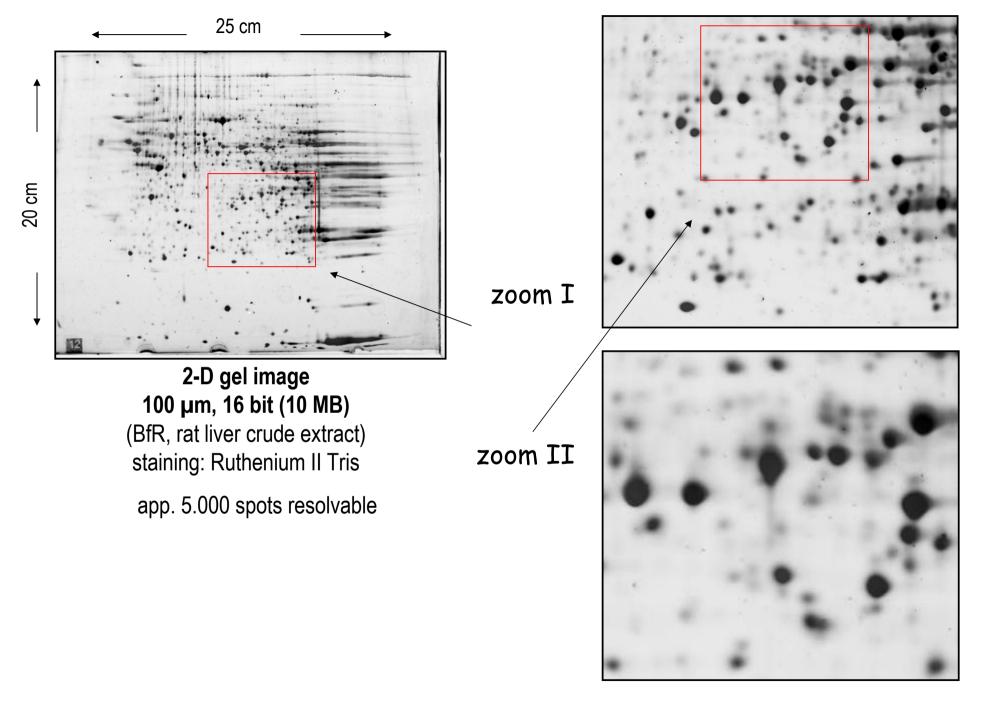
■ (2) **IPG-Technik (Görg 1982)**

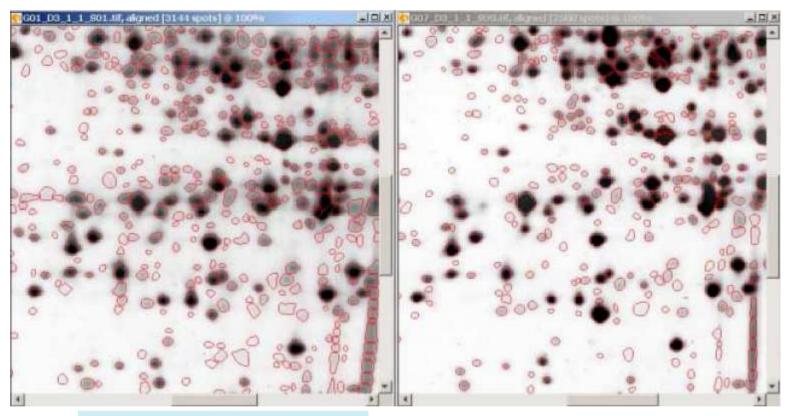
- → IEF mittels Gelstreifen auf Kunststofffolie (fixierter pH Gradient, Immobiline)
- → IPG-Gelstreifen kommerziell erhältlich (max 24cm), mehrere Monate lagerungsfähig
- → SDS-PAGE wie bei NEPHGE
- → 12 Gele/ Kammer
- → problematisch: Trennung im basischen Bereich ("streaking")


■ (3) **DIGE** (<u>D</u>ifference <u>i</u>n <u>g</u>el <u>e</u>lectrophoresis)

- → 2 Proben + interner Standard in einem Gel
- → Fluoreszenzmarker Cy3, Cy5, Cy2, Multiplexing


2D Elektrophorese (2-DE)


immer noch führende Technik


- aus komplexen Proteingemischen (Lebergewebe)
 lassen sich mehrere Tausend Spots trennen
- gut zur Erfassung differentiell exprimierter Proteine geeignet (Quantifizierbarkeit)
- Limitationen:
- → sehr kleine + große sowie stark saure/ basische Proteine sind unterrepräsentiert
- → Berücksichtigung von Membranproteinen nur schwer möglich (Löslichkeit + Basizität)
- Proben müssen einen Proteingehalt im Bereich > 10 μg aufweisen

2-DE Proteomics Workflow (BfR)

Gelbildanalyse

Spot Detection + Warping

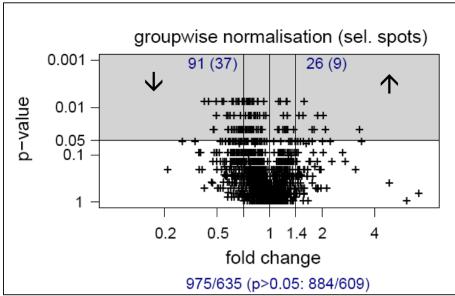
Spot Matching

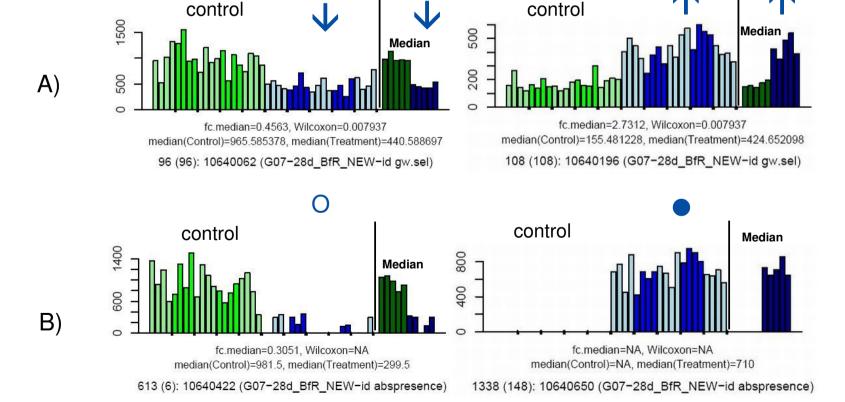
Normalization

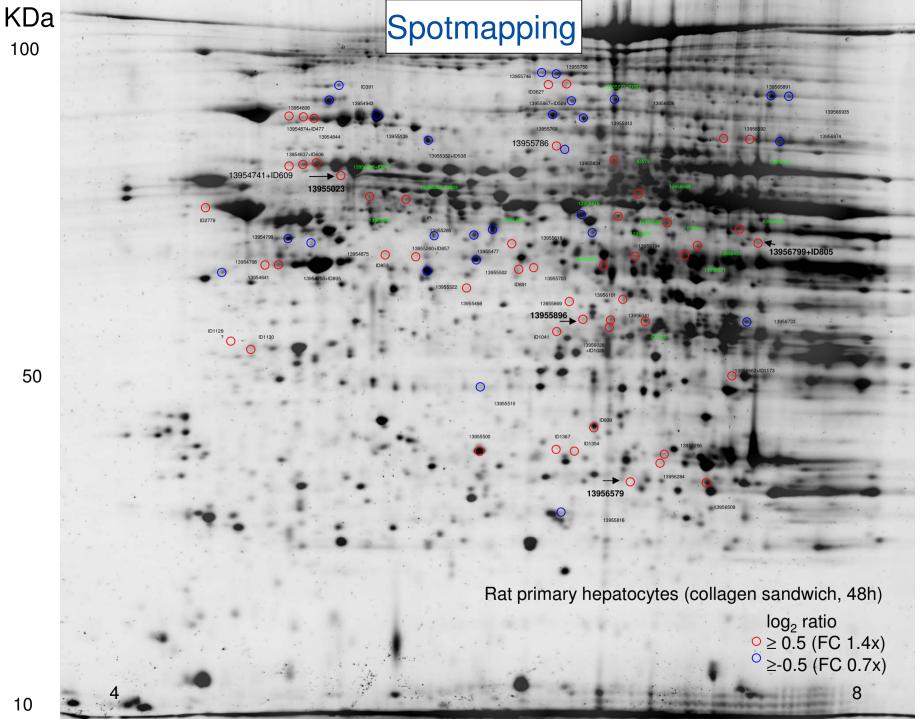
Identification of interesting spots

Commercial Software

Delta-2D ProteinMine

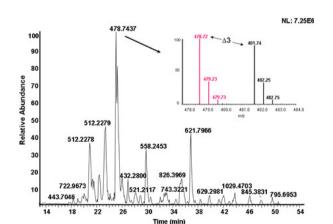

Biostatistics


- equalize intensity medians of gels
- absence-presence search + statistical testing



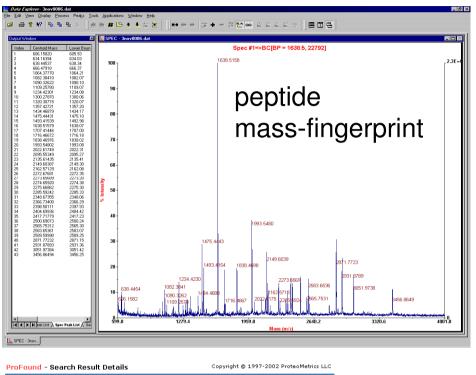
Datenanalyse/ Biostatistik

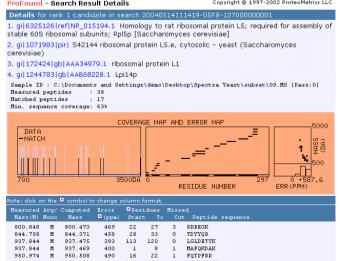
threshold (expression change) fold change 0.7/ 1.4 = log₂ ratio -0.5/ 0.5



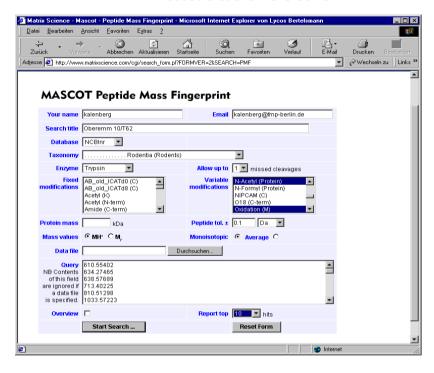
рΗ

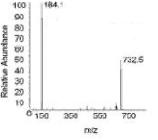
Proteinidentifizierung - Massenspektrometrie


- Spotentnahme aus 2-DE Gel ("Picking") manuell oder mittels Roboter
- Proteingelspots werden mit Trypsin verdaut
- aufspotten der Probe (Peptidgemisch) auf MALDI-Target Platte
- Messung mit MALDI-TOF MS/MS
 - Peptide-Mass-Fingerprint (PMF)
 - Ionenfragmentierung, Massenselektion (MS/MS)
- alternativ: Messung mit ESI-QTOF MS/MS (falls keine Identifizierung mittels MALDI)



PMF + MS/MS Spektren

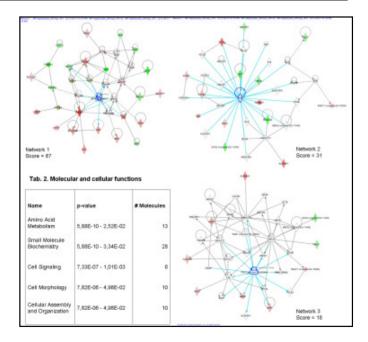

Proteinidentifizierung – PMF + MS/MS (MALDI-TOF)


MASCOT search results

Database-search


MS/MS / Fragmentionenanalyse:

→ Zuordnung zu einem spezifischen Peptid möglich


Data Mining

Proteinlisten

Log2 Ratio	Uniprot-ID	Notes	Symbol	Entrez Gene Name	Location	Type(s)	Log2 Ratio	Uniprot-ID	Notes	Symbol	Entrez Gene Name	Location	Type(s)
3,950	P63038	D	HSPD1	heat shock 60kDa protein 1 (chaperonin)	Cytoplasm	enzyme	0,984	Q58FK9	100000	Kat3	kynurenine aminotransferase III	unknown	enzyme
2,695	Q1HCL7		NADKD1	NAD kinase domain containing 1	Cytoplasm	other	0,930	Q68FU3	D	ETFB	electron-transfer-flavoprotein, beta polypeptide	Cytoplasm	transporter
2,653	P07724		ALB	abumin	Extracellular	:transporter	0,926	Q9P2R7	D	SUCLA2	succinate-CoA ligase, ADP-forming, beta subunit	Cytoplasm	enzyme
2,653	Q91ZA3		PCCA	propionyl CoA carbonylase, alpha polypeptide	Cytoplasm	enzyme	0,895	Q6NXW6		RAD17	cell cycle checkpoint protein RAD17	Nucleus	other
2.022	DOOLER		ATTOO	ATP synthase, H+ transporting, mitochondrial	Cohooloom		0,646	Q5BJY9	D	KRT18	keratin 18	Cytoplasm	other
2,632	P06576		ATP5B	F1 complex	Cytoplasm	transporter	0,633	P63038	D	HSPD1	heat shock 60kDa protein 1 (chaperonin)	Cytoplasm	enzyme
2,445	P63018	D	HSPA8	heat shock 70kDa protein 8	Cytoplasm	enzyme	0,478	P60711		ACTB	actin, beta	Cytoplasm	other
2,442	P00367		GLUD1	glutamate dehydrogenase 1	Cytoplasm	enzyme	-1,916	Q2K142		PSMD11	proteasome (prosome, macropain) 26S subunit	Cytoplasm	other
2,350	Q63342		DMGDH	dimethylglycine dehydrogenase	Cytoplasm	enzyme	-1,870	P28480		TCP1	t-complex 1	Cytoplasm	other
2,341	Q02253		ALDH6A1	aldehyde dehydrogenase 6 family, member A1	Cytoplasm	enzyme	-1,751	P08461		DLAT	dihydrolipoamide S-acetyltransferase	Cytoplasm	enzyme
2,123	P63018	D	HSPA8	heat shock 70kDa protein 8	Cytoplasm	enzyme	-1,516	P50137	D.	TKT	transketolase	Cytoplasm	ептуте
1,889	P11725		OTC	ornithine carbamoytransferase	Cytoplasm	enzyme	-1,491	Q9Z218		SUCLG2	succinate-CoA ligase, GDP-forming, beta subunit	Cytoplasm	enzyme
1,861	P63038	D	HSPD1	heat shock 60kDa protein 1 (chaperonin)	Cytoplasm	enzyme	-1,290	Q10758		KRT8	keratin 8	Cytoplasm	other
1,792	P10760		AHCY	adenosylhomocysteinase	Cytoplasm	enzyme	-1,179	Q9ER34		AC02	aconitase 2, mitochondrial	Cytoplasm	enzyme
1,711	P11960	D	BCKDHA	branched chain keto acid dehydrogenase E1	Cytoplasm	enzyme	-1,169	Q5XHZ0	D	TRAP1	TNF receptor-associated protein 1	Cytoplasm	enzyme
1,711	P53395		DBT	dihydrolipoamide branched chain transacylase E2	Cytoplasm	enzyme	-1,128	Q5XIE6		HIBCH	3-hydroxyisobutyryl-CoA hydrolase	Cytoplasm	enzyme
1,612	Q64640		ADK	adenosine kinase	Nucleus	kinase	-1,079	P13444		MAT1A	methionine adenosytransferase I, alpha	Cytoplasm	enzyme
1,612	Q800/B4		NRAP	nebulin-related anchoring protein	Cytoplasm	other	-1,077	P11960	D	BCKDHA	branched chain keto acid dehydrogenase E1	Odnolosm	
1,402	P14568		ASS1	argininosuccinate synthase 1	Cytoplasm	enzyme	-1,077	P11900	U	DUNDIN	a-polypeptide	Cytoplasm	enzyme
1,379	Q68FU3	D	ETFB	electron-transfer-flavoprotein, beta polypeptide	Cytoplasm	transporter	-1.051	D02400		DOMON	proteasome (prosome, macropain) 26S subunit	Manhoos	
1,351	P14604		ECHS1	encyl CoA hydratase, short chain, 1, mitochondrial	Cytoplasm	enzyme	-1,001	P62193		PSMC1	ATPase	Nucleus	peptidase
1,263	Q5BJY9	D	KRT18	keratin 18	Cytoplasm	other	-1,033	Q5XHZ0	D	TRAP1	TNF receptor-associated protein 1	Cytoplasm	enzyme
1,227	Q5BJY9	D	KRT18	keratin 18	Cytoplasm	other	-0,981	Q32LP2		RDX	radxin	Cytoplasm	other
	000047		0-1-11	cytochrome P450, family 4, subtamily a	O. Andrews		-0.958	Q5BJY9	D	KRT18	keratin 18	Cytoplasm	other
1,202	P20817		Cyp4a14	polypeptide 14	Cytoplasm	епzутте	0.040	000000		CCC+0			translation
1,181	P07824		ARG1	arginase, liver	Cytoplasm	епzутне	-0,946	Q68FR6		EEF1G	eukaryotic translation elongation factor 1 gamma	Cytoplasm	regulator
1,079	P29401	D	TKT	transketolase	Cytoplasm	enzyme	-0.930	P38647		HSPA9	heat shock 70kDa protein 9 (mortalin)	Cytoplasm	other
1,070	Q03336		RGN	regucalcin (senescence marker protein-30)	Nucleus	еплутте	-0,815	P16332		MUT	methylmalonyl CoA mutase	Cytoplasm	enzyme
1,049	B0BNJ4		ETHE1	ethylmalonic encephalopathy 1	Cytoplasm	enzyme	-0.783	Q66HF1		NDUFS1	NADH dehydrogenase (ubiquinone) Fe-S protein 1	Cytoplasm	enzyme
1,001	P63018	D	HSPA8	heat shock 70kDa protein 8	Cytoplasm	еплутне	-0,710	Q5XHZ0	D	TRAP1	TNF receptor-associated protein 1	Cytoplasm	enzyme
1,000	000004		0010	phenazine biosynthesis-like protein domain			-0.690	Q8CAQ8		IMMT	inner membrane protein, mitochondrial	Cytoplasm	other
	Q68G31		PBLD	containing protein	unknown	enzyme	-0.597	Q9Z219	D	SUCLA2	succinate-CoA ligase, ADP-forming, beta subunit	Cytoplasm	enzyme

- Netzwerk-/ Pathwayanalyse
 - ✓ Analyse der funktionalen Kategorien
 - + Zusammenhänge/ Mechanismen
 - ✓ Proteininteraktionen, cell signalling
 - ✓ Biomarker
 - → Hypothesenbildung
 - → Verifizierung mittels traditioneller molekularbiologischer Techniken

Shotgun-Proteomics (LC-MS/MS)

- generell: komplementärer Einsatz zur 2-DE
- Vorteile: bessere Erfassung kleiner und großer Proteine + saurer + basischer Proteine + gering abundanter Proteine (z. B. Transkriptionsfaktoren)
- Herausforderungen: Reproduzierbarkeit, Quantifizierung, Messzeiten, Datenmengen
- je nach Komplexizität der Probe: Vorfraktionierung erforderlich
- √ 1-D Elektrophorese

alternativ:

- ✓ gelfrei: Säulen-Fraktionierung, auch mehrdimensional
- tryptischer Verdau der Proteine → Peptidgemisch
- HPLC, micro/ nano
- Analyse mittels ESI-MS/MS (Q-TOF, Orbitrap)
- Quantifizierung komplexer Gemische: Isotopemmarkierung

Übersicht - Massenspektrometer

http://archive.genomeconference.org/File/publicity/Health-Service-in-BGI/Proteomics-platform-by-high-throughput-MS.pdf

Mass spectrometry instrument

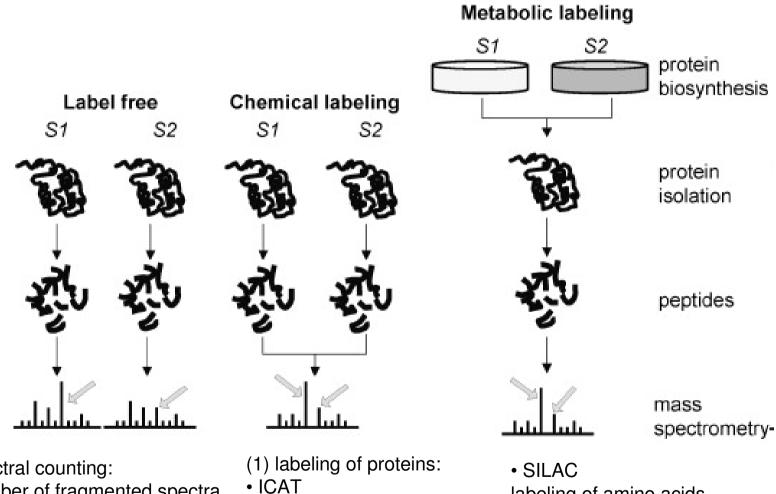
MS	QTRAP 5500	LTQ-Orbitrap velos	maXis	ultrafleXtreme
Producer	AB SCIEX	Thermo Scientific	Bruker	Bruker
Source-Analyzer	ESI-Triplequadrupole-LIT	ESI-LTQ-Orbitrap	ESI-Q-TOF-MS	MALDI-TOF-TOF
Resolution	>12,000	>100,000	>60,000	≥40,000
Accuracy	≤700 ppm	< 1 ppm	< 5 ppm	≤ 3 ppm
Application	MRMModification (target protein)	ProfilingLabel-freeiTRAQModification	Medium complex sample ID	 QC Peptide and protein molecular weight determination Low complex sample ID

QTRAP 5500, AB SCIEX

LTQ-Orbitrap velos, Thermo Scientific

maXis Q-TOF, Bruker

ultrafleXtreme, Bruker


Shotgun Strategien

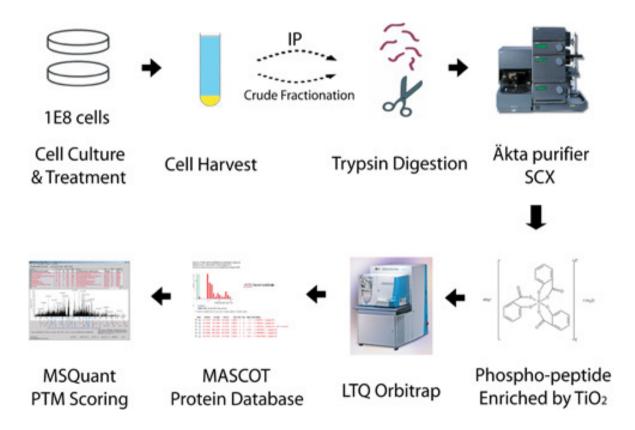
- 1) *Shotgun (A)*
 - ✓ Fraktionierung eines Proteinlysates mittels 1-DE
 - → Proteinverlust durch Transfer von IEF- auf PA-Gel wird vermieden
 - ✓ Gel zerschneiden oder Banden ausschneiden, tryptischer Verdau
 - ✓ Trennung des Peptidgemisches mittels nano-LC
 - ✓ Analyse mittels ESI-MS/MS
- 2) Shotgun (B)
 - √ (Vorfraktionierung eines Proteinlysates mittels S\u00e4ulenchromatografie)
 - √ tryptischer Verdau
 - ✓ Trennung des Peptidgemisches mittels nano-LC
 - ✓ Analyse mittels ESI-MS/MS
- 3) *MudPIT* (Multidimensionale Protein Identifikationstechnologie)*:
 - ✓ Proteinverdau, Trennung des Peptidgemisches über 2D-Säule mit "reversed phase" Material + Kationenausstauscher (SCX)
 - → Elution der Peptide in 10-15 Salzstufen
 - ✓ Analyse mittels ESI-MS/MS: 30-50 Tsd.! Tandem-Massenspektren für ein komplexes Proteingemisch (Zelllysat)
 - √ "top-down"

*http://www.ruhr-uni-bochum.de/bioms/forsch.html

Differentielle Expressionsanalyse mittels MDLC*/MS

- Spectral counting: number of fragmented spectra
- peptide chromatographic peak intensity (AUC)
- ICPL
- (2) labeling of peptides
- iTRAQ: (erhöhter Probendurchsatz)
- labeling of amino acids $(^{13}C, ^{15}N)$

*multi-dimensional liquid chromatography Abb. entnommen aus Zhang et al. (2010)


Phosphoproteomics

- posttranslationale Phosphorylierung von zellulären Proteinen
- Im Vergleich zu globalen Ansätzen, Beschränkung auf spezifischen Teil des Proteoms
- ✓ betrifft rund 1/3 der zellulären Proteine
- √ Änderung des Phosphorylierungsstatus wirkt sich auf die Aktivität aus
- ✓ assoziierte Pathways lassen sich gezielt erfassen- weniger ist oft mehr!
- ✓ Enzymaktivität, Konformation, Protein-Protein Interaktionen, intrazellulärer Transport
 - → bedeutend für viele intrazelluläre Signalübertragungen
 - → MAPK Pathway, Aktivierung von Onkogenen
 - → Entstehung von Krebs
- Glycosylierung
- Ubiquitinierung

Phosphoproteomics

- 2-DE: Proteinextraktion und nachfolgend Markierung der phosphorylierten Proteinspots
 - √ 32P Markierung
 - ✓ Pro-Q Diamond gel stain
 - ✓ Lanthan
- gelfrei: Anreicherung über phosphospezifische Anikörper, TiO₂

© 2012, Max Planck Institute of Biochemistry, Martinsried

Targeted Proteomics

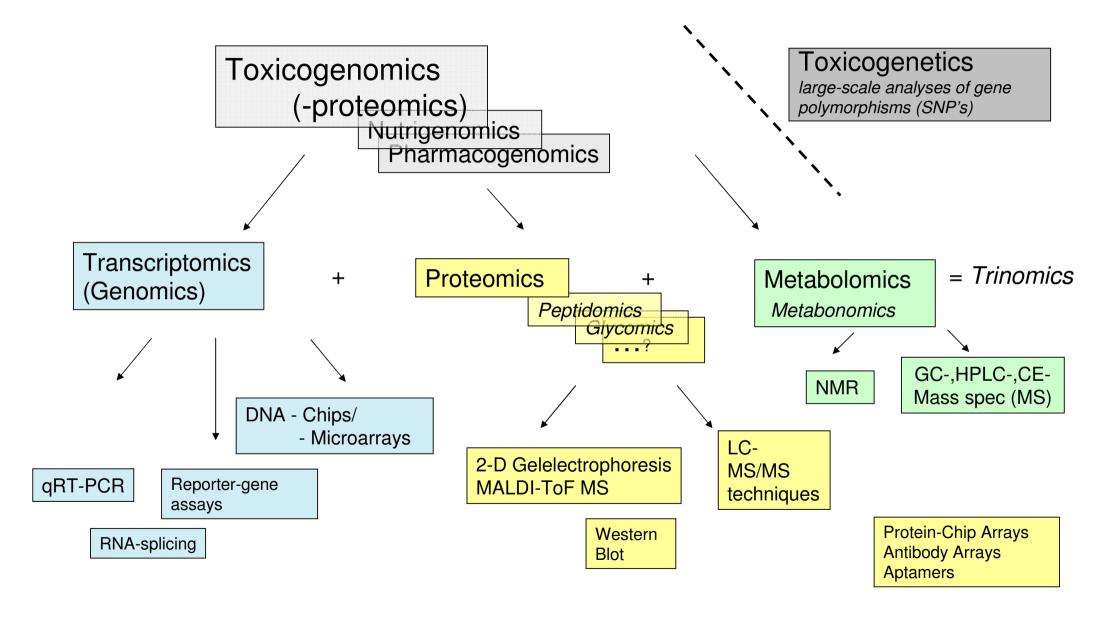
- Erfassung, Charakterisierung und Quantifizierung ausgewählter Proteine
- auch gering abundante Proteine analysierbar (app. 50 copies/cell)
- geringe quantitative Veränderungen nachweisbar
- wenig Ausgangsmaterial benötigt
- LC-MS/MS (Triple Quad MS): Selected (Multiple Reaction Montoring (SRM/ MRM)
- Methodenentwicklung für ein Protein vergleichsweise aufwändig
 - ✓ gute Reproduzierbarkeit
- Prinzip: mehrere Massenanalysatoren- mehrdimensionale Fragmentionenanalyse
 - ✓ Rückschlüsse auf die Struktur möglich
 - ✓ Quantifizierung: interne Standards; Vergleich von 1-2 Fragmentionenspektren
- Anwendungen:
- ✓ differentielle Expressionsanalyse auch größerer Sets von Proteinen
- ✓ Allergennachweis
- Biomarkervalidierung

Proteomics-Anwendungen im Lebensmittelbereich: "Food Proteomics"

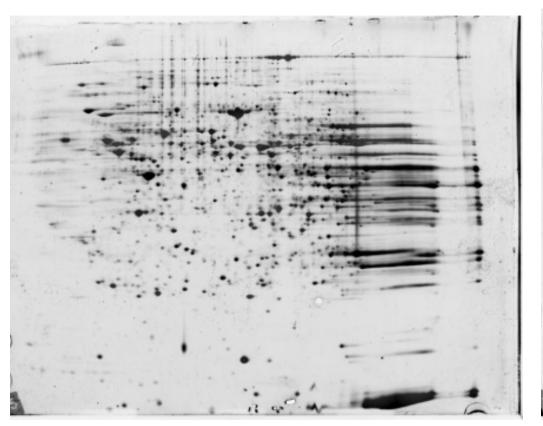
- Erregernachweis (mikrobiologische Kontaminationen von LM)
 - ✓ MALDI/TOF MS, spezifischer MS-"Fingerprint", sub-Spezies, Endotoxine
- Analyse herstellungsbedingter Modifikationen (Hochdruckbehandlung, GVO)
 - ✓ MALDI/TOF MS, spezifischer MS-"Fingerprint"
- Allergennachweis ("Allergenomics")
 - ✓ IgE-Antigen-Screening von LM:
 - → 2-DE, immunoblotting mit IgE-AK aus Patientenseren
 - → MS-Identifizierung markierter Spots
 - ✓ MALDI-TOF MS
 - ✓ SRM (MRM) als Alternative zu qRT-PCR und antikörperbasierten Methoden
 - → Sensitivität im Bereich von 1 ppm
 - ✓ Identifizierung immunodominanter Epitope in LM
- lebensmittelassoziierte Substanzen: Screening molekulartoxikologischer Effekte
- → Erfassung potentiell toxischer Wirkungsmechanismen
 - ✓ Kontaminanten (Heattox-Produkte, Nanopartikel , PSM etc.)
 - √ Pflanzeninhaltsstoffe
 - ✓ Nahrungsergänzungsmittel

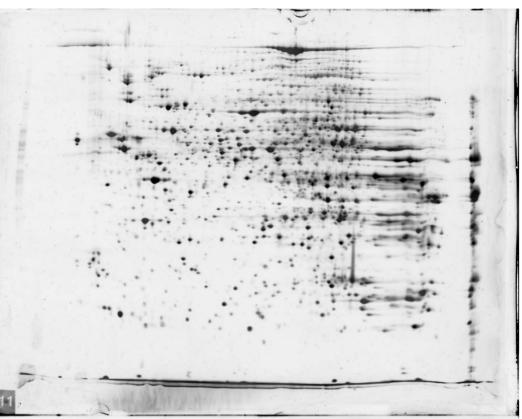
DANKE FÜR IHRE AUFMERKSAMKEIT

Axel Oberemm


Bundesinstitut für Risikobewertung

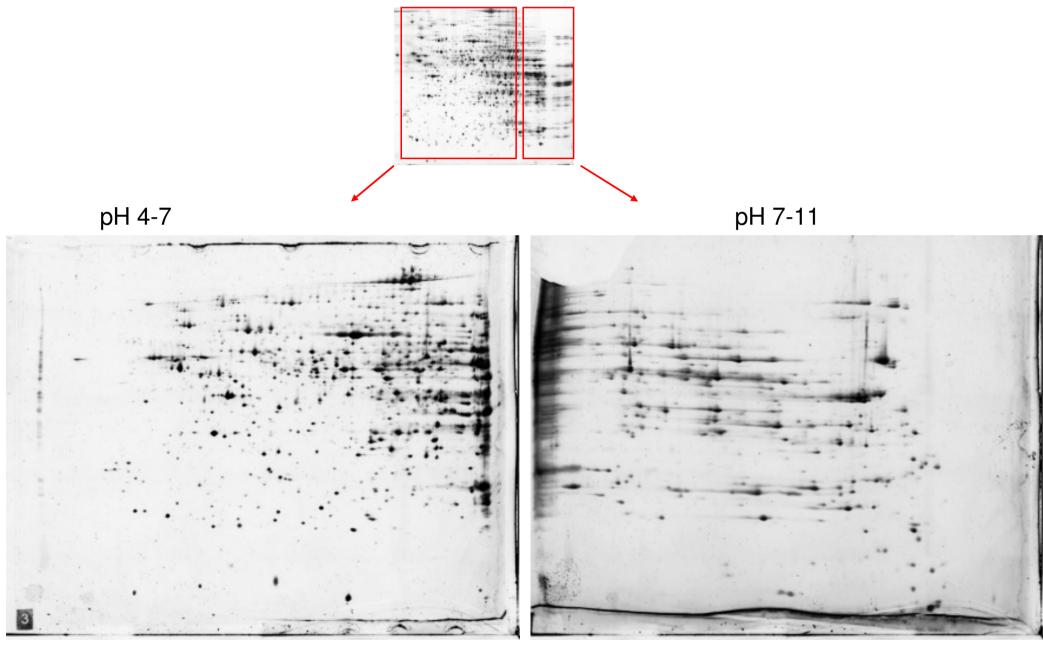
Thielallee 88-92 • D-14195 Berlin

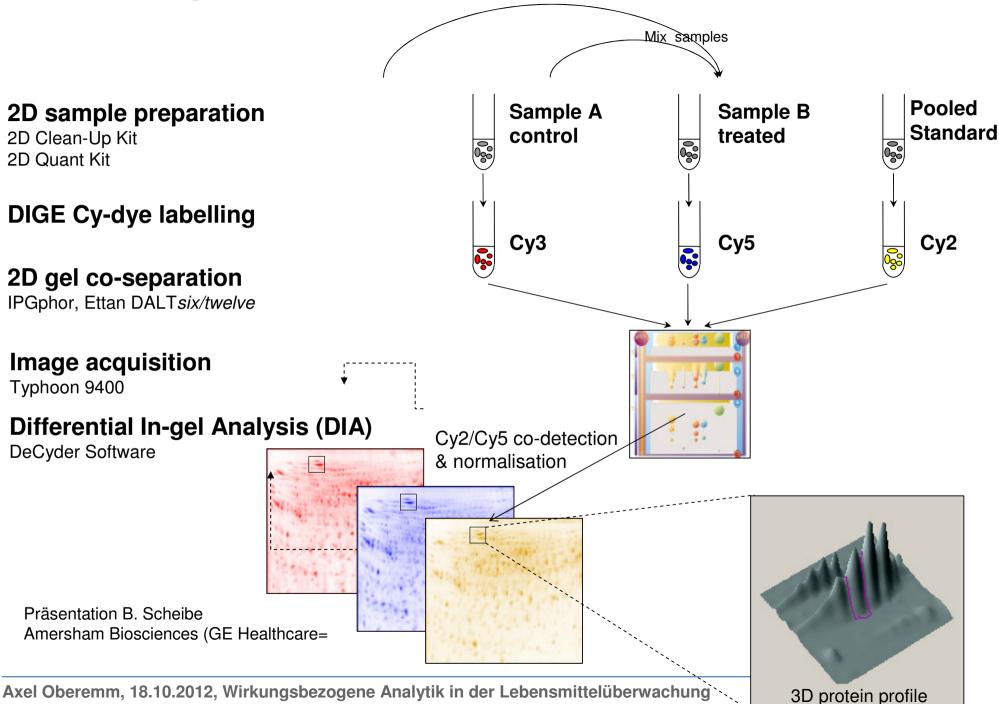

Tel. 0 30 - 184 12 - 0 • Fax 0 30 - 184 12 - 47 41


bfr@bfr.bund.de • www.bfr.bund.de

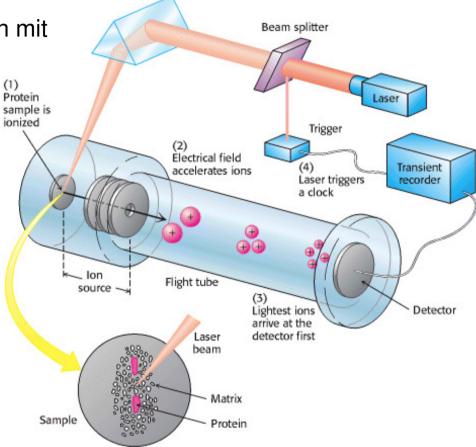
Toxicogenomics (TXG)

Methodenoptimierung (BfR, K. Paal 2006)




- ✓ horizontale und vertikale Streifen sind eliminiert
- ✓ Auflösung im basischen Bereich verbessert
- ✓ hochmolekulare Proteine in Gel gewandert
- ✓ Hintergrund klarer, runde, kleine Spots
- √ um 50% reduzierter Proteinauftrag

2DE-Methodenoptimierung - Weitere pH Bereiche



DIGE - experimental workflow *

Proteinidentifizierung: MALDI-TOF

Proteinspots werden mit Trypsin verdaut

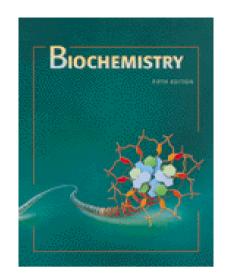


Figure 4.16. MALDI-TOF Mass Spectrometry. (1) The protein sample, embedded in an appropriate matrix, is ionized by the application of a laser beam. (2) An electrical field accelerates the ions formed through the flight tube toward the detector. (3) The lightest ions arrive first. (4) The ionizing laser pulse also triggers a clock that measures the time of flight (TOF) for the ions. [After J. T. Watson, Introduction to Mass Spectrometry, 3d ed. (Lippincott-Raven, 1997), p. 279.]

© 2002 by W. H. Freeman and Company.

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=stryer.figgrp.481

Simplifying Targeted Protein Quantification with Mass Spec: The SRM Atlas and Multiplexed MRM Protein Assays

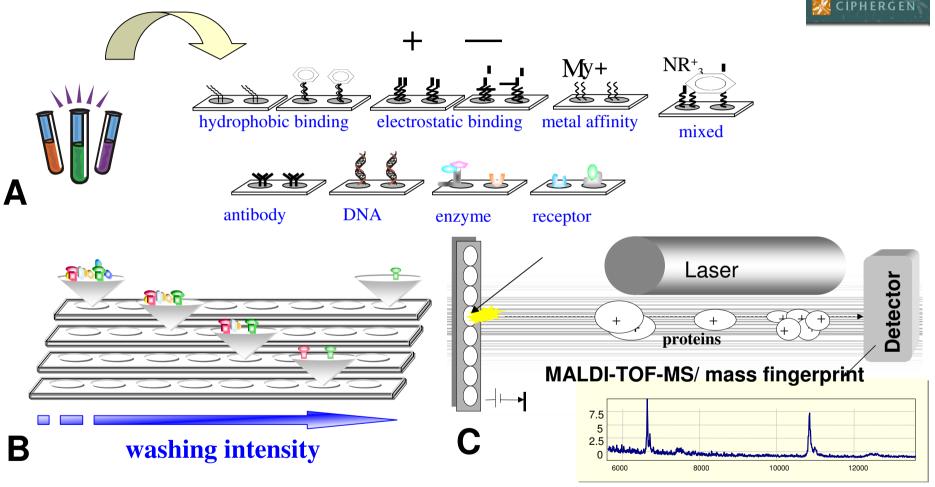
12/2010

Mass spectrometry (MS), especially selected reaction monitoring/multiple reaction monitoring (SRM/MRM), has become routine for proteomics, metabolomics, and biomarker validation. SRM and MRM assays conducted on triple quadrupole instruments can be coupled to liquid chromatography (LC) for analysis of complex proteome digests.

For successful execution of SRM/MRM experiments several factors require consideration. These include ready access to appropriate parameters such as peptide choice and transition choice, reproducible and specific sample preparation setup, and optimal use of the mass spectrometer to achieve the highest sensitivity possible.

SRM Atlas, an informatics resource, facilitates setup of SRM/MRM quantification assays of targeted proteins by providing access to these parameters. Created by ordering more than 150,000 synthetic peptides based on 20,300 proteins, the resource generated high-resolution accurate mass spectra on Q-TOF LC/MS systems to create MS/MS profiles for peptide library searching and fragmentation data for the SRM Atlas.

During this webinar you will learn about combining automated robotic sample preparation, SISCAPA sample preparation, and MRM assay setup with transitions from the SRM Atlas as well as increasing sensitivity gains from iFunnel-enabled triple quad LC/MS systems to develop practical assays for differential proteomic analysis, biomarker validation, or biological pathway analysis.


http://www.genengnews.com/webinars/simplifying-targeted-protein-quantification-with-mass-spec-the-srm-atlas-and-multiplexed-mrm-pr/130/2009.

SELDITM-Proteinchip-Array

Surface-enhanced laser desorption/ionization

slide supported by F. DeJesus, Merck KGaA

MRM (SRM)

Jungblut

Proteinspezies lassen sich mit der SRM(selected reaction monitoring)-Methode dann quantifizieren, wenn von der Proteinspezies mindestens ein Peptid bekannt ist, das in seiner Struktur einzigartig ist[5]. Die SRM-Analyse beinhaltet im ersten Schritt nach der Ionisierung der Analyten die Selektion eines definierten lons im ersten Massenanalysator. Nach Fragmentierung des Ions im zweiten Massenanalysator wird aus den Fragment-Ionen ein definiertes Ion selektiert und anschliesend detektiert. Aufgrund der doppelten Selektion liefert die SRM-Methode eine hohe Zuverlassigkeit und Nachweisempfindlichkeit. In Kombination mit internen Standards, idealerweise strukturidentische Molekule mit stabilen Isotopen markiert. kann mit der SRM-Methode absolut quantifiziert werden. Der lineare dynamische Bereich umfasst drei bis funf Grosenordnungen[6]. Selbst niedrig abundante Plasma-Proteine lassen sich mit der SRM-Methode quantifizieren[7]. Die SRM-Methode lasst sich vorteilhaft nutzen, um quantitative Veranderungen von 100 Proteinspezies und mehr im Zeitverlauf von Inkubationsexperimenten parallel zu verfolgen.

Wikipedia

Der dritte Quadrupol gibt die Möglichkeit zu "scannen", also alle Produktionen des im ersten Quadrupol isolierten Ions (engl. parent ion) zu ermitteln, oder selektiv nur ein bekanntes Fragmention zu beobachten. Durch das Erfassen aller Fragmentionen können Rückschlüsse auf die Struktur gezogen werden. Durch Beobachtung von nur ein oder zwei Fragmentionen kann sehr empfindlich und selektiv quantifiziert werden. Diese Technik wird auch als Multiple Reaction Monitoring (MRM) bezeichnet.

Methodenübersicht

Grundprinzip: Fraktionierung

Forné et al.

Figure 1. Main proteomic workflows used in fish proteome studies published in the period 2000–2009. Proteins from a given tissue, cell line or even the whole organism (embryo) were separated and digested (A and B) or digested and separated (C). Analysis of digested proteins was performed either by PMF (A1) and/or MS/MS (A2) for 2-DE separated proteins, or by LC-MS/MS for 1-DE separated proteins (B1) as well as for SCX fractionated peptides (C1). MS data from all sources was then processed by searching engines to identify proteins of interest.

The results were finally confirmed by using other complementary techniques to achieve a wider picture of the biological question addressed.

Projekte im BfR, Abt. Lebensmittelsicherheit