

The Chemistry of Tattoos

Section I: Analytics & Exposure

Jutta Tentschert

Traditional Tattoos: Examples

Pigments used

- Charcoal (e.g. Iceman "Ötzi")
- Ochre (Fe₂O₃ H₂O, Fe₂O₃)
- Mixtures of charcoal, soot, honey, milk (e.g. Chatolic Croatian Women in Bosnia)

Application techniques

- Cutting and rubbing
- Pricking
- Punching / Poking

different angle of tattooing instrument

Consequences of the application method

- Placement of pigment into dermis (depth)
- Duration / fading
- Successful removal

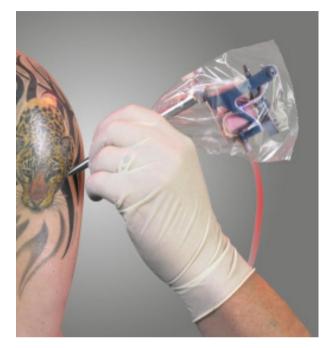
Skythian Chieftain; Source: http://en.wikipedia.org/wiki/History_of_tattooing

Christian tattooing in Bosnia and Herzegovina; Source:

 $\label{lem:http://en.wikipedia.org/wiki/Christian_tattooing_in_Bosnia_and_Herzegovina$

Modern Tattoos or PMU:

Tattoo inks:


- Single substance or mixtures
- Inorganic Pigments
- Organic Pigments
- Not always specially designed for this purpose

What is expected from modern tattoo inks:

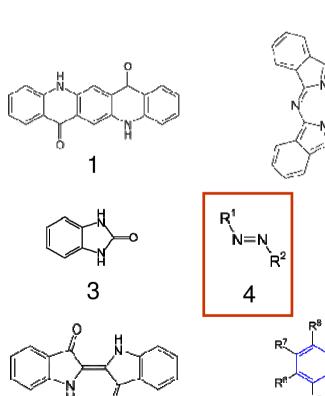
- Even distribution of the colour
- New colour variations, wide colour range
- High brightness and intensity
- High duration / no fading

Health and safety:

- Tattoo procedure should be safe
- Hygienic aspects considered
- Tattoo inks should be safe

Modern Tattoo-Machine; Source: BfR

Permanent Make Up; Source: http://en.wikipedia.org/wiki/Permanent_makeup


Tattoo-Ink-Chemistry

Pigments:

- <u>Inorganic Pigments:</u>
 - Oxides (TiO₂, Cr₂O₃)
 - Sulphides (CdS, HgS)
 - Chromates, Cyanides (Lead chromates, Ferrocyanides)

Tattoo-Ink

- Aluminum salts
- Organic Pigments (Synthetic Compounds):
 - o Insoluble organic compounds
 - Dyes converted to insoluble pigments
 - Quinacridones
 - 2. Phthalocyanines
 - 3. Benzimidazolones
 - 4. Azo-Compounds
 - 5. Anthraquinones
 - 6. Indigoide Structures

6

Pigment

+

Page 4

Carrier

Tattoo-Ink-Chemistry

Tattoo-Ink = Carrier + Pigment

Carrier:

Single substance or mixture

Purpose:

- Even distribution of pigments in liquid formulation
- Prevention of pigment clumping
- Inhibition of pathogen growth
- Examples
 - Water, Ethanol
 - Propylene glycol
 - o Glycerine (glycerol), sorbitol
 - Witch hazel
 - Mouth wash (Listerine™)

RAPEX 2013

Source:http://ec.europa.eu/consumers/safety/rapex/alerts/main/

RAPEX 2013

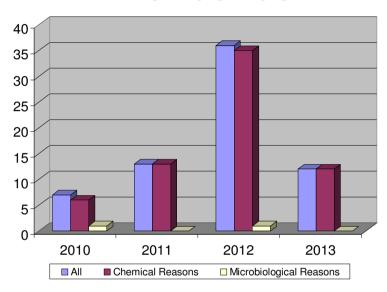
Source:http://ec.europa.eu/consumers/safety/rapex/alerts/main/

Regulatory status of tattoo inks and pigments

National		Provisions
No specific legislation	Denmark	Product Safety Act & REACH
	Finnland	Act of Consumer Product & Services (Directive 2001/95/EY)
	Great Britain	General Product Safety Regulations 1994
	Luxembourg	EU ResAP(2008)1 is not counter-singed
EU- regulation only	Belgium	Requirements and Criteria for the safety of tattoos and Permanent make-up (EU ResAP(2008)1); since 2008
additional national pro∨isions	Austria	 Documentation has to be kept for 10 years. BGbl., Part II; 2008
		 Used colorants not be known to be harmful. BGbl., Part II; 2003
	Germany	 LFGB (German Food and Feed Code) TätoV (German provision on tattoos); 2008 Database for Tattoo- & Permanent Make-Up Products by CTL, 2009
	Netherlands	Stb. 2003, 342; Regulations for Tattoo Colorants & Permanent Make- Up; since 2003
	Sweden	Regulation LVFS 2012:25 by the Medical Product Agencey 2013
	Switzerland	SR 817.023.41; Regulation about objects for the human skin contact; since 2006, (update 2012)

See also Session V Risk Assessment & Regulation on Friday

RAPEX-Alerts: 2010 - 2013


Alerts: 68

Due to chemical reasons: 66

Substances mentioned in 2013:

- Heavy Metal
 - Nickel: 4900 mg/kg (ALARA)
 - Chromium: 61 mg/kg (0.2 mg/kg)
- primary aromatic amines (PAA) from azo dyes
 - o-Anisidine: 1753 mg/kg (should not be present, carcinogenic)
 - Toluidine: 120 mg/kg (carcinogenic)
- Polycyclic aromatic hydrocarbons (PAH): 96 mg/kg (0.5 mg/kg)
 - Benzo[a]pyrene (BaP): 0.2 mg/kg (0.005 mg/kg)

Graphical Overview of the RAPEX Alerts from 2010 - 2013

RAPEX 2013 Source:http://ec.europa.eu/consumers/safety/rapex/alerts/main

Analytics:

Technologies used for trace analysis

General techniques (pigments in general)

- Scanning electron microscopy (SEM)
- X-Ray micro-analysis
- (micro-) Raman spectroscopy

Techniques for inorganic pigments

- Tools for element analytics
 - sector field inductively coupled plasma mass spectrometry (HR-ICP-MS)
 - o graphite furnace atomic absorption spectrometry (GF-AAS)
 - flame atomic absorption spectrometry (F-AAS)

Techniques for organic pigments

- Mass spectrometry tools
 - Tandem mass spectrometry (LC-MS/MS)
 - Time of flight mass spectrometry (ToF-MS)
 - Gas chromatography mass spectrometry (GC-MS)

Sample Preparation; Source: BfR

Analysis of organic pigments, LC-MS/MS; Source: BfR

Analytics – available data:

Data present:

- For many inorganic pigments
- For some organic pigments / dyes and their impurities
 (e. g. Azo pigments, PAA)

Data gap:

Carriers

- Less harmful ones:
 - Ethanol, propylene glycol, glycerol, witch hazel, Listerine™
- Presumably toxic ones:
 - Methanol, isopropyl alcohol, ethylene glycol
 - o Formaldehyde, glutaraldehyde

Other Chemicals

- Various surfactants or detergents
- Biocidal substances
- Plasticiser like phthalates
- Impurities

Sample Preparation; Source: BfR

Azo dyes; Source: BfR

Photodecomposition of Pigment Yellow 74:

<u>Tattoo inks:</u> Yellow, Dark Yellow, Sun Yellow,

Mohawk Yellow, Canary Yellow, Tulip

Yellow and Poppy

Substance class: Azo Compound

Amount present: 0.7 -12.7 % wt/wt

Characterisation: NMR, MS

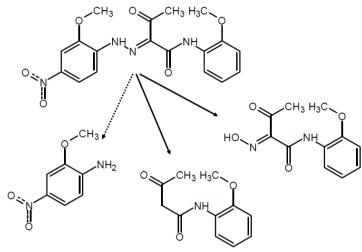
<u>Photostability:</u> simulated solar light:

6.5 kW xenon arc lamp,

filtered via WG320 glass filters,

duration: 5 h

<u>Decomposition</u>


products: HPLC, MS, NMR

Conclusion:

Decomposition of tattoo inks may occur during:

- Sunlight exposure
- Tanning
- Laser removal

→ May generate toxic products

Yanyan Cui et al. (2004) Photochemistry and Photobiology, 80: 175–184.

Azo Dyes: Source: BfR

Bio-kinetic studies of tattoo ink pigments:

Hardly any data available!

Tattooing of skin results in transportation and light-induced decomposition of tattoo pigments – a first quantification in vivo using a mouse model, Engel et al., 2009 Experimental Dermatology, 19, 54–60.

Metabolism studies: on rat liver and human liver microsomes

- Some pigments can be metabolized by phase I enzymes (P450s)
- P450s exist in the skin of rodents and humans

No reports exist regarding

mutagenic, carcinogenic, or photocarcinogenic potential of azo compounds like PY74

But:

o-Anisidine: (in vitro) DNA adducts urinary bladder carcinogen in mice and rats (Stiborova et al., 2001, 2002)

Oxidation of PY74-M1:

may form active intermediates for *o*-anisidine & *N*-acetyl *p*-benzoquinone imine (Stiborova et al., 2002 Rogers et al., 1997)

Yanyan Cui et al. (2005) Drug Metabolism and Disposition 33 (10) 1459-1465.

Fading of tattoos and tattoo removal:

Fading of tattoos (esp. yellow and orange):

- Dispersion through the skin
- Phagocytosis and removal
- Metabolism of the pigments in the skin
- Photochemical decomposition of the pigments

Tattoo Removal

o polychromatic, high-intensity light penetrates skin just below the surface

Laser removal

- Q-switched ruby Lasers, Q-switched Nd-YAG Lasers, Q-switched alexandrite Lasers
- o 1960: "hot vapour bursts"; left behind "cosmetically acceptable scars"
- o present: not always successful, duration up to 20 h

"Dissolving" ink:

- beta-carotene in polymer shells
- o ~ one laser session;
- o available in the US only; medical trials are ongoing

Source BfR

Trends: tattoo inks and pigments

New challenges for analytical chemists?

- Fluorescent tattoo inks
- Tattoo inks glowing in the dark
- White Ink Tattoos
 Considered to be feminine
 Look like scars
- Bio-tattoo inks
 Self degradable after specific time
- Tattoo inks using nanotechnology
 Encapsulated pigments in polymer shells in nano size

Source: BfR

RAPEX 2013 Source: http://ec.europa.eu/consumers/safety/rapex/alerts/main/

Thank you for your attention

Jutta Tentschert

Federal Institute for Risk Assessment

Max-Dohrn-Str. 8-10 ● 10589 Berlin, GERMANY

Tel. +49 30 - 184 12 - 0 • Fax +49 30 - 184 12 - 47 41

bfr@bfr.bund.de • www.bfr.bund.de